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Metabolite fingerprints, obtained with direct injection mass spectrometry (MS) with both positive and
negative ionization, were used with analysis of variance-principal components analysis (ANOVA-
PCA) to discriminate between cultivars and growing treatments of broccoli. The sample set consisted
of two cultivars of broccoli, Majestic and Legacy, the first grown with four different levels of Se and
the second grown organically and conventionally with two rates of irrigation. Chemical composition
differences in the two cultivars and seven treatments produced patterns that were visually and
statistically distinguishable using ANOVA-PCA. PCA loadings allowed identification of the molecular
and fragment ions that provided the most significant chemical differences. A standardized profiling
method for phenolic compounds showed that important discriminating ions were not phenolic
compounds. The elution times of the discriminating ions and previous results suggest that they were
common sugars and organic acids. ANOVA calculations of the positive and negative ionization MS
fingerprints showed that 33% of the variance came from the cultivar, 59% from the growing treatment,
and 8% from analytical uncertainty. Although the positive and negative ionization fingerprints differed
significantly, there was no difference in the distribution of variance. High variance of individual masses
with cultivars or growing treatment was correlated with high PCA loadings. The ANOVA data suggest
that only variables with high variance for analytical uncertainty should be deleted. All other variables
represent discriminating masses that allow separation of the samples with respect to cultivar and
treatment.
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INTRODUCTION

Metabolite fingerprinting is a potentially powerful tool for
the rapid analysis of foods and nutritional and herbal supple-
ments (1-7). The ever-changing nature of the U.S. food and
supplement market renders classical methods of analysis
inadequate for maintaining accurate and timely databases. There

is a constant flux of new produce, new cultivars of familiar fruits
and vegetables, and new formulations of prepared foods. The
supplement market is even more challenging with the availability
of many new botanicals, herbal supplements, and variety of
formulations with additional nutrients and biologically active
compounds. The development of new analytical tools is neces-
sary for the rapid identification of compounds in foods and
characterization and classification of foods to keep up with the
dynamic market place.

Metabolite fingerprinting is an untargeted method used to
identify chemical patterns in organisms without identification
or quantification of specific components (1-6). Fingerprints are
acquired without any chromatographic separation by direct
analysis of the solid sample or the sample extract. Detection
methods include Fourier transform infrared (FT-IR), mass (MS),
nuclear magnetic resonance (NMR), and ultraviolet (UV)
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absorption spectrometry (4-8). Pattern recognition analysis is
necessary to interpret the data and may be unsupervised, for
example, principal component analysis (PCA) or hierarchical
clustering analysis (HCA), or supervised, for example, discrimi-
nate analysis (DA) or partial least-squares (PLS) (1-3). In the
case of plants, fingerprinting with pattern recognition analysis
has been used to discriminate between plant genus, species, and
genotypes (5-8).

PCA allows discriminating variables to be identified by their
loadings. For MS fingerprints, this means that discriminating
ions and, hence, corresponding compounds can be potentially
identified (7). This is an attractive possibility that would allow
metabolite fingerprinting with pattern recognition analysis to
be combined with metabolite identification. However, identifica-
tion of compounds based strictly on direct injection MS is
difficult. All molecular and fragment ions are formed simulta-
neously, and their relationship is undetermined. With chromato-
graphic profiling, the relationship between molecular and
fragment ions and UV spectra is well established. Thus,
chromatographic profiling provides more information on which
to base compound identification and will most likely be required
for identification of most compounds.

A new method for the analysis of fingerprints has been
developed that combines analysis of variance with principal
component analysis (ANOVA-PCA) (8-10). One of the appeals
of PCA, in general, is that it allows visual, as well as statistical,
analysis of the data. However, as more variables are incorporated
into the experimental design, data evaluation becomes more
complicated. With ANOVA-PCA, submatrices are constructed
that isolate each experimental variable and simplify PCA (9).
ANOVA-PCA score plots provide separation based on the first
principal component and make visual inspection and statistical
analysis very easy. Because prior knowledge of the analytical
variables is used to construct the submatrices, ANOVA-PCA
is a supervised pattern recognition technique.

The submatrices constructed for ANOVA-PCA also make it
possible to compute the relative variance associated with each
experimental variable (8). Relative variance can be calculated
for the whole spectra or for individual masses. In general, the
directions of maximum variance correspond to the directions
of maximum information (11). Masses with high variance, other
than that associated with analytical uncertainty, will provide
maximum information. Thus, PCA loadings and relative vari-
ance will provide similar information toward identifying key
masses.

Recently, ANOVA-PCA was used to analyze UV fingerprints
(molecular absorption in the ultraviolet region from 200 to 400
nm) of two cultivars of broccoli grown under seven distinctly
different growing conditions (treatments) (8). These broccoli
samples had previously been shown to have significant differ-
ences in levels of glucosinolates, phenolic acids, and free amino
acids (12-14). We were able to construct score plots that
allowed visual distinction between the cultivars and each pair
of the seven treatments (growing conditions). On the basis of
the integrated spectra, the relative variance contributions were
calculated to be 33% for cultivar, 66% for treatment, and 1%
for analytical uncertainty. It was also possible to identify
wavelength intervals that had minimal relative analytical
uncertainty and contributed strongly to the variance associated
with either cultivar or treatment, although the low resolution
of the method made it impossible to identify specific com-
pounds. The PCA spectral fingerprinting approach may become
an important tool for food-source verification and evaluation

of adulteration in nutraceutical, botanical, and dietary supple-
ment formulations.

The study reported here applied ANOVA-PCA to fingerprints
obtained from direct injection MS of aqueous methanol extracts
of the same broccoli samples previously analyzed (8). Loadings
from PCA and high treatment variance from ANOVA analyses
of the submatrices were used to identify masses of interest.
These masses were correlated with peaks obtained using a
standardized phenolic profiling method based on liquid chro-
matography with diode array and mass spectrometric detection
(LC-DAD-ESI/MS) developed in our laboratory (15). Relative
variances for cultivar and sample treatment were computed and
compared to results obtained for UV fingerprinting. The
relationship between PCA loadings and relative variance for
the experimental parameters was examined.

MATERIALS AND METHODS

Plant Materials. Samples were freeze-dried and powdered com-
posites of two varieties of broccoli (Brasscia oleracea): Majestic,
provided by Dr. John W. Finley (ARS, USDA); and Legacy, provided
by Dr. Gary Banuelos (ARS, USDA).

Greenhouse Study. The cv. Majestic broccoli was grown in a
greenhouse with four different concentrations of sodium selenate as
previously described (12). Approximately 2 weeks prior to head
formation, 10 mL of four concentrations of sodium selenate (0, 0.17,
0.52, and 5.2 mM) was applied to the developing plants in pots every
other day for 8 days. Then 20 mL of sodium selenate solution of each
concentration was applied every other day for two additional applica-
tions. These treatments with various concentrations of sodium selenate
applied resulted in 0.4, 5.7, 98.6, and 879.2 µg/g of selenium (dry
weight) in the broccoli florets. In the text, the samples from the four
selenium (Se) growing conditions are referred to as 0, 5, 100, and 1000
ppm, respectively.

Field Study. The cv. Legacy broccoli was obtained from field studies
from two different 4 ha field sites in central California (Harris Farms,
Five Points, CA), one field using conventional farming methods and
the other field using organic farming methods on a certified organic
field (13). Both farms represented typical organic and conventional
broccoli production in the Central California Valley Region, where the
soil type is classified as Panoche clay loam. Conventionally and
organically grown broccoli was planted by direct seed at both sites,
and water was initially applied with a sprinkler irrigation system for
the first 30 days. After this interval, water was provided by surface
drip irrigation (T-tape drip line, T-Systems Int., San Diego, CA) for
the remainder of the season until harvest. For conventionally grown
broccoli, two irrigation levels were used representing 100 and 80% of
the evapotranspiration (Eto) rate reported by the Westlands California
Irrigation Management Information System weather station. Organically
grown broccoli was produced using a single level of irrigation at 100%
Eto rate. In the text, these three growing conditions are referred to as
C100, C80, and Org, respectively.

Broccoli plants were harvested at each site, and samples for each
growing condition were processed separately. Samples from field crops
were collected for at least four growing seasons (13). Whole plants
were separated into leaf, stems, and florets. Broccoli florets were then
freeze-dried and later coarsely ground in food processors and com-
posited. Ground samples were kept below -20 °C. Prior to analysis or
extraction, samples were sieved through standard 20 mesh sieves
(particle size < 0.850 mm) to obtain uniform homogenized particle
size sample.

Chemicals. HPLC-grade MeOH was purchased from Fisher Chemi-
cals (Fair Lawn, NJ). HPLC-grade acetone was purchased from Burdick
& Jackson (Muskegon, MI). Deionized water (18.2 MΩ · cm) was
obtained in-house using a Nanopure diamond analytical ultrapure water
purification system (model D11901, Branstead Internationals, Dubuque,
IA). Poly(vinylidene difluoride) (PVDF) syringe filters with pore size
) 0.45 µm were procured from National Scientific Co. (Duluth,
GA).
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Extractions. The weighed freeze-dried and powdered broccoli
samples were placed in a 16 × 125 mm screw-cap vial with 5 mL of
MeOH/H2O (60:40, % v/v) (15). The mixture was sonicated in an
ultrasonic bath (Branson 2510, Branson Ultrasonic Corp., Danbury,
CT) at 40 °C for 30 min. The mixture was centrifuged (model GT2,
West Chester, PA) at low speed (5000 rpm) for 10 min. The supernate
was transferred into a separate vial, and the residue was extracted two
more times with 2.5 mL of fresh MeOH/H2O (60:40, % v/v). The
volume of the combined extract was adjusted to 10 mL with MeOH/
H2O (60:40, % v/v). All extracts were stored in 2 mL of HPLC vials
under nitrogen at -70 °C until analyzed. An appropriate aliquot of an
extract was filtered using PVDF syringe filters (pore size ) 0. 45 µm)
prior to UV and MS analysis. Each of the seven growing conditions
(0, 5, 100, and 1000 ppm, C100, C80, and Org) was extracted five
times.

Instrumentation. All data were acquired with an Agilent 1100
HPLC (Agilent, Palo Alto, CA) coupled with a diode array detector
(DAD) and mass spectrometer detector (MSD, SL mode) (15). The
MSD (SL) used electrospray ionization (ESI) and was programmable
to acquire data in positive and negative ionization (PI and NI) modes
at low (100 V) and high (250 V) fragmentation voltages, in rapid
sequence. A drying gas flow of 13 L/min, a drying gas temperature of
350 °C, a nebulizer pressure of 50 psi, and capillary voltages of 4000
V for PI and 3500 V for NI were used.

For direct injection, the sample was injected directly into the ionizer
with no column at 1 mL/min using an infusion pump. The MSD was
programmed to scan masses from m/z 50 to 2000 in 10 min.

Chromatographic profiles were acquired for the C100 sample using
a Waters (Waters Corp., Milford, MA) Symmetry column (C18, 5 mm,
250 × 4.6 mm) with a Sentry guard column (Symmetry 5 mm, 3.9 ×
20 mm) at flow rate of 1.0 mL/min. The column oven temperature
was set at 25 °C. The mobile phase consisted of a combination of A
(0.1% formic acid in water) and B (0.1% formic acid in acetonitrile).
The gradient was varied linearly from 10 to 26% B (v/v) in 40 min, to
65% B at 70 min, and finally to 100% B at 71 min and held at 100%
B to 75 min.

Data Analysis. All spectral data were converted to the American
Standard Code for Information Interchange (ASCII) files and exported
for chemometric analysis. Preprocessing of the data matrices was
performed using Excel (Microsoft, Inc., Belleview, WA), and PCA was
performed using Pirouttte 3.1 (Infometrix, Inc., Bothell, WA) (8).

MS fingerprints were one-dimensional spectra, counts versus mass
for m/z 50-2000. Five repeat analyses of the 7 different broccoli
extracts provided 35 spectra. This yielded an initial matrix of 35 rows
(samples) by 1950 columns (variables, mass ions). The Agilent software
listed all counts as a percentage of the highest peak (normalized at
100). The mass with the highest peak count varied between m/z 91
and 191, for negative ionization, and between m/z 69 and 83, for positive
ionization. The maximum counts varied by approximately 10%.

The first step was to discard all masses for individual fingerprints
that did not exceed 1% of the highest count. Second, the masses for
the 35 samples were aligned. This was not a trivial task because the
instrument software did not list masses if the counts did not exceed a
minimum level. Third, individual masses were discarded for all repeats
of a sample if four of the five repeats did not register a count; this was
primarily for masses with low counts. Fingerprints were discarded in
two cases for both the positive and negative spectra because the counts
were consistently 40% low. This pattern was observed for both positive
and negative ionizations. In addition, no peaks were observed in the
negative mode for two of the samples. At this stage, the data matrix
for the negative ionization profiles was 31 × 99 and 33 × 167 for
positive ionization.

The ANOVA data preprocessing has been described in detail
previously (8) on the basis of the method of Harrington et al. (9).
Briefly, the data matrix was transformed by scaling to unit variance
for each sample and each mass. Unlike the UV data, the MS data were
not transformed to the first derivative.

A grand means matrix was computed and subtracted from the double-
scaled matrix to provide a grand means residuals matrix (also called a
mean-centered matrix). The cultivar means matrix was computed and
subtracted from the grand means residuals matrix to give the cultivar

means residuals matrix. The treatment means matrix was computed
and subtracted from the cultivar residuals matrix to give the treatment
means residuals matrix. The treatment residuals matrix represents the
analytical uncertainty matrix. The two matrices tested by PCA were
(1) the matrix resulting from the sum of the treatment mean matrix
and the analytical uncertainty matrix (i.e., the cultivar residuals matrix)
and (2) the matrix resulting from the sum of the cultivar means matrix
and the analytical uncertainty matrix.

The variance contribution of the experimental factors was computed
by squaring and summing the data for the following: (1) the grand
means residuals matrix (total variance), (2) the cultivar means matrix
(between cultivar variance), (3) the cultivar means residuals matrix
(within cultivar variance), (4) the treatment means matrix (between
treatment variance), and (5) the treatment means residuals matrix (within
treatment variance). Summing was implemented for each mass to
provide variance as a function of mass and across mass and sample to
provide variance as a function of the integrated spectra.

Statistical Calculations. The significance of the separation of two
compared populations was computed using the Student t test. The
Student t value was computed as the difference between the population
means divided by the shared standard deviation:

t)
X̄1 - X̄2

s X̄1-X̄2

(1)

The mean is calculated as

X̄i )
∑
j)1

ni

xij

ni
(2)

The standard deviation is calculated as

si )�(xi1 - x̄i)
2

ni - 1
(3)

The shared standard deviation is computed as

s X̄1-X̄2
)� s1

2

n1
+

s2
2

n2
(4)

The probability, p, of the two populations being similar was determined
from Student t tables based on t and n ) n1 + n2 - 2.

RESULTS AND DISCUSSION

ANOVA-PCA. The chemical differences of broccoli as a
function of cultivar and treatment (growing conditions) were
investigated using both negative and positive ionization MS
fingerprints obtained from direct injection of the aqueous
methanol extracts using a low excitation energy (100 V) to
minimize in-source collision-induced dissociation (CID). The
fingerprints were one-dimensional arrays with counts as a
function of mass as shown in Figure 1 for the average of the
multiple analyses of sample C100.

The MS data were processed as described under Materials
and Methods to yield two-dimensional matrices that were 31
samples × 99 masses (between m/z 100 and 650) for negative
ionization and 33 × 167 for positive ionization. No significant
counts were observed for masses above m/z 650. This is
consistent with the observation of Shulaev et al. (5) that direct
injection MS lacked high mass ions due to ion suppression.

The array sizes show that approximately 80% of the masses
in the negative ionization fingerprint and 67% in the positive
ionization fingerprint were not useful (i.e., low counts and/or
poor precision). These data matrices were then preprocessed as
described under Materials and Methods, and appropriate sub-
matrices were subjected to PCA.
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The chemical differences between the cultivars of broccoli were
initially investigated by PCA of the matrix obtained by combining
the cultivar means matrix and the analytical uncertainty matrix.
The score plot for the negative ionization fingerprints is shown in
Figure 2A. The data for the two cultivars were strongly separated
on the basis of the first principal component, which accounted for
60% of the total variance. Statistically, the separation was
significant at greater than the 99.95% confidence level based on
subsamples of the composited samples (Table 1). Similar results
were observed for the positive ionization fingerprints (Figure 3A
and Table 1).

The chemical differences between treatments were investi-
gated by PCA of the cultivar residual matrix (the combination
of the treatment means matrix and the analytical uncertainty
matrix). The score plots for inclusion of all seven treatments
(Figures 2B and 3B) show that the separation on the x-axis is
slightly better for the negative fingerprints. In each case, the
first principal component is almost sufficient to differentiate

between all treatments. In both cases, however, the second
principal component is needed to provide discrimination between
treatments.

PCA for pairs of treatments (between cultivars or between
individual treatments) provides much clearer visual and statisti-
cal discrimination. Figure 4 and Table 1 provide score plots
and statistical analyses for 3 of the 21 possible pairings of
treatments. The results for the other 18 pairings were similar
and permitted visual and statistical differentiation. The pairs
selected for PCA in Figure 4 represent three comparisons of
treatments within a cultivar (0 vs 5 ppm and 100 vs 1000 ppm
for cv. Majestic and C100 vs Org for cv. Legacy).

Despite the dramatic difference between the negative and
positive fingerprints (Figure 1), PCA of the data yielded very
similar results (Figures 2-4 and Table 1). The difference in
positive and negative ionization of the sample components is
also illustrated by the total ion count (TIC) chromatographic
profiles shown in Figure 5B,C.

Although both show intense peaks between 2 and 7 min, there
are far fewer peaks at longer retention times with positive
ionization. The masses contributing to the peaks between 2 and
7 min also differed considerably, as will be discussed below.
Thus, the ions constituting the fingerprints for the two ionization
modes were different, but the PCA (Figures 2-4) and statistical
results (Table 1) were almost identical.

Figure 1. Positive and negative mass spectral fingerprints of Majestic
cultivar of broccoli grown with 1000 ppm of selenium.

Figure 2. Principal component analysis score plots based on negative
ionization fingerprints for (A) the comparison of the broccoli cultivars Legacy
(2) and Majestic (4) and (B) the comparison of all broccoli grown with
different selenium concentrations (9, 0 ppm; 4, 5 ppm; 2, 100 ppm; [,
1000 ppm; ], C100; O, C80; 0, Org).

Table 1. Computed Student t Values for ANOVA-PCAa

UV MS(-) MS(+)

comparison of treatment n t P)p n t p n t p

Legacy vs Majestic 63 105 <0.0005 30 44 <0.0005 33 67 <0.0005
0 vs 5 ppm 15 63 <0.0005 7 13 <0.0005 8 37 <0.0005
100 vs 1000 ppm 20 86 <0.0005 9 32 <0.0005 10 26 <0.0005
C100 vs Org 19 12 <0.0005 10 27 <0.0005 10 29 <0.0005

a n is the number of subsample measurements, t is the computed Student t
value, and p is the probability that the two populations are the same.

Figure 3. Principal component analysis score plots based on positive
ionization fingerprints for (A) the comparison of Legacy (2) and Majestic
(9) broccoli cultivars and (B) the comparison of all broccoli treatments
(2, 0 ppm; ], 5 ppm; [, 100 and 1000 ppm; O, C100; 9, C80, 4,
Org).
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PCA Loadings. PCA of the MS fingerprints provides data
on the loadings for each ion. Ions with high loadings for the
first principal component can be used to identify those com-
pounds that are affected most by cultivar and treatment and

contribute the most to the horizontal separations in Figures 2-4.
Table 2 provides X-axis loading data for PCA of the negative
ionization fingerprints shown earlier, that is, comparison of
cultivars (Figure 2A), all treatments (Figure 2B), and three

Figure 4. Principal component analysis score plots based on negative (A-C) and positive (D-F) ionization for the comparison of treatments: (A, D)
0 versus 5 ppm; (B, E) 100 versus 1000 ppm; (C, F) C100 and Org (9, 0 ppm; 2, 5 ppm; 4, 100 ppm; 9, 1000 ppm; [, C100; ], Org).

Figure 5. Liquid chromatography-mass spectrometry chromatograms with (A) ultraviolet detection (350 nm), (B) negative ionization, and (C) positive
ionization.
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pairs of treatments (Figure 4). Those masses providing the top
20% of the loadings for each PCA are denoted with an “X”.
Only masses that had at least one significant loading are shown;
masses with no “X” are not listed. The exception is m/z 207,
which will be discussed later. This form of data display was
chosen, instead of a loading plot, to make the loading for each
ion easier to see.

There is very little overlap between the PCA loadings for
the comparison of cultivars (column 3) and all treatments
(column 4) (Tables 2 and 3). The patterns for PCA loadings
for pairs of treatments (columns 5-7) were difficult to

characterize (Tables 2 and 3). There was little correlation
between the pair loadings and either the cultivar or treatment
loadings. Loadings for PCA of the other 18 pairs of cultivars
are not shown, but they were equally difficult to characterize.

Table 2. Relative Counts, PCA Loading, and Variance as a Function of
MasssNegative Ionization

loadings for ANOVA PCA % of total variance

m/z
rel

counts cultivar treatment
C100 vs

Org
0 vs

5
100 vs
1000 cultivar treatment analytical

115 2.0 X 56 32 12
131 0.3 X 43 47 10
133 40.9 X X X 34 63 3
145 3.5 X X X X 54 44 2
150 2.1 X 8 54 38
161 2.9 X 10 66 24
179 9.0 X 0 89 11
191 76.0 X 3 89 8
195 26.6 X 20 74 6
199 0.5 X X 50 49 1
207 2.8 1 34 65
209 2.0 X 79 15 6
215 18.4 X 16 32 52
225 15.5 X 6 80 14
233 1.5 X 50 35 15
242 2.5 X 0 84 16
243 0.7 X X X 1 89 10
277 3.1 X X X 29 68 3
284 1.9 X 49 38 13
293 2.6 X 1 90 8
296 0.9 X 83 6 11
308 1.6 X X 42 52 6
311 1.0 X X 74 18 8
325 5.1 X X X X 46 52 2
327 3.6 X X 37 51 12
328 0.2 X X 20 79 1
341 2.5 X X 7 84 10
352 0.1 X X 10 89 1
363 0.8 X X 22 70 8
377 6.7 X X X 0 87 13
378 1.1 X 3 47 49
379 3.2 X 2 86 12
387 9.1 X X X X 5 93 2
388 1.6 X X 0 94 6
404 1.3 X 23 72 5
420 5.5 X X X 63 36 1
422 3.8 X X 57 38 5
432 0.2 X 18 73 10
436 11.4 X X X X 39 58 3
439 11.2 X X X X 2 93 4
440 2.2 X X 6 86 8
446 0.2 X 20 76 4
447 14.7 X 96 3 1
448 3.4 X X 94 5 1
449 1.5 X 96 2 2
463 1.0 X 32 56 12
465 0.3 X 20 78 2
473 0.3 X 20 78 2
477 51.0 X X X 2 94 5
478 12.5 X X 1 93 6
479 6.4 X X 0 91 9
487 2.1 X X X 65 30 4
488 0.4 X 6 88 6
492 2.1 X X X 4 88 8
493 1.1 X 0 80 19
613 1.5 X 0 86 14

Table 3. Relative Counts, PCA Loading, and Variance as a Function of
MasssPositive Ionization

loadings for ANOVA-PCA % of total variance

m/z
rel

counts cultivar treatment
C100 vs

Org
0 vs

5
100 vs
1000 cultivar treatment analytical

105 7.7 X X 13 83 4
106 0.9 X 1 56 44
110 4.1 X X X 0 84 16
111 0.6 X X 6 85 9
116 9.3 X X X X 2 95 2
117 0.9 X 17 43 40
118 6.3 X X X X X 53 43 4
131 1.4 X X 53 44 4
132 12.2 X X X X 77 22 1
133 3.8 X X 66 31 3
134 2.1 X 37 41 23
136 0.5 X 9 60 31
138 2.3 X X 60 39 1
146 5.2 X X X 21 77 3
147 30.5 X X X X X 25 74 1
148 4.7 X X 72 27 1
152 7.1 X X X X 79 20 1
156 2.2 X X 79 18 3
157 1.8 X X X 0 97 3
159 2.0 48 33 19
160 3.0 X X X 48 47 5
161 0.8 X X 16 83 1
164 4.3 X X X 26 72 2
166 6.3 X X 93 6 1
171 1.1 X X 0 74 25
173 3.4 X X 71 26 4
174 0.2 X 16 52 32
175 9.4 X X X 77 22 1
176 2.7 X X X 34 60 6
177 0.8 X X X 2 96 2
178 1.7 X X X 56 42 1
182 0.4 X 41 29 29
184 2.3 X X X X 66 33 1
185 4.6 X X X 9 88 3
186 0.6 X X X 12 77 11
187 0.4 X 51 48 1
190 3.6 X 89 10 1
191 1.6 X X 38 55 7
192 1.5 X X 79 19 2
198 0.9 X 84 11 5
203 1.6 X 8 42 51
207 1.8 X 39 35 25
208 0.0 4 14 83
219 13.4 X X 82 16 2
224 0.9 X 87 5 9
231 1.3 X 71 22 7
235 0.8 X X 7 81 12
237 1.5 X 59 29 12
249 1.6 X X X X 46 52 2
258 0.8 X 16 65 19
261 1.3 X 71 22 8
263 1.6 X 77 17 6
266 1.1 X X 17 79 4
275 0.7 X X 0 85 15
279 1.0 X 53 37 10
293 1.3 X X X 11 83 6
296 0.6 X 22 37 41
304 0.9 X 0 59 41
306 0.2 X X X 15 85 1
307 0.4 X 0 41 59
309 1.3 X X X 4 95 1
314 0.2 X X 22 57 21
336 1.0 X X 81 15 4
348 0.4 X 56 28 16
365 1.8 X 8 82 10
367 0.5 X X X 0 91 9
369 0.3 X 22 49 29
381 16.1 X X X X X 16 84 0
382 2.8 X X X X X 22 78 0
383 1.8 X 0 88 12
399 2.2 X X 0 95 5
400 0.9 X X X 22 70 7
404 0.3 X X 22 65 12
438 2.9 X X X 43 56 1
439 0.7 X 39 55 6
474 0.4 X 43 40 17
476 0.3 X 6 66 28
518 0.7 X X 0 78 22
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In general, the masses that provided high loadings were highly
dependent on the treatments being compared. This observation
will be discussed later in more detail.

Data for the loadings of the positive ionization fingerprint
comparisons are shown in Table 3. In general, the patterns for
the loadings were similar to those of the negative fingerprints.
There was little overlap of loadings for the PCA of cultivars
and all treatments and loadings for the PCA of pairs of
treatments. The loadings for the PCA of pairs of treatments were
highly dependent on the treatments being compared.

Compound Identification. Identification of compounds based
strictly on a single mass is highly problematic. If we assumed
that only phenolic compounds were present (because we used
a methanol/water extraction optimized for phenolic compounds),
then six of the negative ion masses in Table 2 could be
tentatively identified from our previous studies of plant phenolics
(15). Masses m/z 191 and 209 are common fragments of the
hydroxycinnamate derivatives. Masses m/z 447, 463, 477, and
479 are suggestive of flavonol hexosides: kaempferol, quercetin,
isorhamnetin, and myricetin, respectively. However, no masses
were observed for the aglycones of the flavonols (m/z 285, 310,
315, and 317), and it was not possible to determine if the ions
identified as flavonol glycosides were molecular or fragment
ions.

A more detailed analysis of the phenolic components in
broccoli was made using the chromatographic profiling method
developed in our Beltsville laboratory (15). This LC-DAD-ESI/
MS method provides retention times, UV spectra (200-600 nm),
and positive and negative mass spectra at high and low
fragmentation voltages and allows clear identification of mo-
lecular and fragment ions. The profiling method has been used
to analyze more than 360 plant materials and 200 standard
compounds. Analysis of an extract of the C100 sample (Legacy
broccoli, grown conventionally with 100% water) produced the
UV (350 nm) and positive and negative TIC chromatograms
shown in Figure 5 and the identification of compounds shown
in Table 4.

None of the ions listed in Tables 2 and 3 are phenolic
compounds. The provisionally identified flavonoid glycosides
in Table 4 (quercetin and kaempferol sophorosides and kaempfer-
ol diglucoside) do not have molecular or fragment ions that
correspond to any of the ions in Tables 2 and 3. Extracted ion
count (EIC) chromatograms of m/z 191, 447, and 477 (Figure
6) and m/z 209, 463, and 479 (not shown) provide peaks that
do not correlate with the retention times of the suggested
phenolic compounds or with UV absorption peaks of phenolic
compounds (Figure 5A). Masses m/z 191 (Figure 6B) and 209
(not shown) eluted early and were associated with peaks 1 and
2 (Figure 5A). Masses m/z 447 and 477 (Figure 6C,D)
constituted peaks 18 and 8/9, respectively. Masses m/z 463
and 479 (not shown) gave low-intensity peaks that did not
register in Figure 5. None of these peaks absorbed at 350
nm (Figure 5A).

Additionally, the main ions in each peak in Figure 5B,C were
compared to the ions in Tables 2 and 3. Approximately 50%
and 30% (bolded and italicized) of the masses in Tables 2 and
3, respectively, were found in the different chromatographic
peaks. Masses m/z 447 and 477 (Figure 6C,D) were the only
contributors to peaks 18 and 8/9, respectively. They have not
been identified.

The identities of some of the ions in Tables 2 and 3 are
suggested by recent plant metabolomics papers. Goodacre et
al. (16) analyzed Pharbitis nil sap extracts (50% aqueous
isopropanol) by direct injection ESI/MS and reported negative

ions consistent with organic acids and sugars: fumarate (m/z
115), malate (m/z 133), 2-oxoglutarate (m/z 145), citrate (m/z
191), hexoses (m/z 179), and sucrose and isomers (m/z 341).
Dunn et al. (17) examined aqueous extracts of tomato fruit by
both positive and negative ionization MS and observed many
of the same negative ions reported by Goodacre et al. as well
as glucoheptonate (m/z 225). In addition, they reported positive
ions consistent with amino acids: serine (m/z 106), proline (m/z

Table 4. Peak Assignment for Aqueous Methanol Extracts of Broccoli

aglycones λmax

peak
tR

(min)
[M + H]+/[M - H]-

(m/z) m/z nm identification

1 2.53 133/191, 195
2 3.40 295/191, 195
3 4.62 s/436
4 6.00 205/173, 195, 203
5 13.32 s/385
6 14.06 s/421, 431, 463
7a 18.92 627/625 303/301 nda quercetin 3-O-sophoroside
7b 18.92 611/609 287/285 nd kaempferol 7,3-O-

diglucoside
8 22.81 611/609 287/285 nd kaempferol 3-O-

sophoroside
9 24.63 s/447
10 28.78 s/365
11 32.03 s/144
12 32.03 s/447
13 34.96 s/753 nd 240, 330 1,2-disinapoylgentiobiose
14 37.09 s/723 nd 240, 330 1-sinapooyl-2-

feruloylgentiobiose
15 38.77 s/693 nd 240, 330 1,2-diferuloylgentiobiose
16 40.38 s/591 240, 330
17 41.26 s/959 nd 240, 330 1,2,2′-trisinapooylgentiobiose
18 42.68 s/477
19 43.33 s/929 nd 240, 330 1,2′-disinapoyl-2-

feruloylgentiobiose
20 46.29 s/175, 737
21 52.38 351/327
22 54.75 353/211, 329
23 60.03 s/327
24 64.44 335/311

a nd, not determined.

Figure 6. Extracted ion chromatograms with negative ionization for (A)
m/z 133 (possibly malate), (B) m/z 191 (possibly citrate), (C) m/z 447,
and (D) m/z 477.
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116), valine (m/z 118), leucine/isoleucine (m/z 132), aspartic
acid (m/z 134), glutamine (m/z 147), glutamic acid (m/z 148),
histidine (m/z 156), phenylalanine (m/z 166), arginine (m/z 175),
and tyrosine (m/z 182). These masses contributed some of the
highest relative ion counts in Table 3. The EICs for malate
and citrate are shown in Figure 6A,B. They eluted early from
the column, contributing to peaks 1-4 (Figure 5). The early
elution times are consistent with the polar natures of the organic
and amino acids. The least polar compound, the hexose, had a
low intensity and coeluted with peak 9 (Figure 5B).

The presence of these compounds in broccoli seems to be
reasonable, but positive identification will require further
investigation with a column and solvent system appropriate for
more polar compounds and standards. Regardless of their
identity, the early elution time of these compounds and the role
they play in discriminating between cultivars and treatments
suggest that fingerprints of an aqueous or more polar extract
may be more informative than the MeOH/H2O (60:40, % v/v)
extraction solvent that we have used in the present study. We
assumed that phenolic compounds would be environmentally
sensitive and strongly reflect growing conditions. However, it
is essential to evaluate the role of small polar molecules such
as amino acids and simple carbohydrates for classification of
foods and other plant-derived products. Certainly, they are
present in higher concentrations than the phenolic compounds.
By analogy, compounds at the opposite end of the polarity
spectrum, the nonpolar lipid fraction, may also contribute
valuable information for discriminating between plant genus,
species, genotypes, and treatments.

Sources of Variance. The submatrices generated for ANOVA-
PCA can also be used to calculate variance data for the
fingerprints (8). These calculations allow for partitioning of the
total variance of the data between the experimental factors
(cultivar and treatment) and analytical uncertainty for the
integrated spectra or individual variables (masses in this study).
Results for the integrated variance calculations for the positive
and negative MS fingerprints are shown in Table 5 along with
the previous results for the UV fingerprints. All three show that
33% of the variance was attributed to the cultivars. The
analytical uncertainty for MS was about 8% compared to 1%
for UV. This higher level of uncertainty associated with MS is
not surprising because the injection-to-injection variability is
generally acknowledged to be around 10% without an internal
standard. As a consequence, the variance contributed by
treatment was 59% for the MS fingerprints, 7% lower than
calculated for UV.

The agreement of the data in Table 5 may not at first seem
too surprising because the same extract (MeOH/H2O, 60:40,
%v/v) was used for both the UV and MS measurements.
However, the molar absorption coefficient of a compound does
not necessarily correlate with its ability to be positively or
negatively ionized, as shown in Figure 5. Thus, it is possible
that a specific compound may contribute strongly to one
fingerprint and not another. From this perspective, the agreement
of the variance between the different methods in Table 5 is
remarkable. This suggests that the change in plant chemistry

arising from the difference in the cultivars and treatments affects
a wide range of metabolites, not just a few isolated compounds.

The relative distribution of variance can also be computed
for individual masses. These results are shown in Tables 2 and
3 (columns 7-9). We show only masses (with the exception of
m/z 207 in Table 2 and m/z 208 in Table 3) that were in the
top 20% of the loadings for one of the PCAs. All of the masses
that provided less significant loading were not listed. We
observed that the vast majority of the masses in Tables 2 and
3 have less than 10% of their variance attributed to analytical
uncertainty. Thus, high loadings corresponded to high variance
associated with either cultivar or treatment, whereas minimal
variance (generally less than 15%) was associated with analytical
uncertainty.

Close inspection of Tables 2 and 3 shows that, in general,
masses with high loadings for cultivar have a high variance for
cultivar. Those with high loadings for treatment have a high
variance for treatment. This pattern is well illustrated by m/z
447, 477, and 207 in Table 2. For m/z 447, high loading was
observed for the cultivar comparison, and the variance distribu-
tion was 96, 3, and 1%, respectively, for cultivar, treatment,
and analytical uncertainty. For m/z 477, with a high loading
for PCAs of the treatments, the variance distribution was 2, 94,
and 4%, respectively. Finally, for m/z 207, which failed to
provide significant loading for any of the PCA comparisons,
the variance distribution was 1, 34, and 65%, respectively.

There are notable exceptions to the obvious patterns discussed
above. As shown in Table 2, some masses provided high loading
for some comparisons, although the relative variance of the
analytical uncertainty fell between 38 and 52% (m/z 150, 215,
and 378). There are also masses that provided high loading for
the cultivar comparison despite the variance associated with
cultivar being 20% or less (m/z 328, 352, 446, and 473).
Conversely, some masses provide significant loadings for
treatment with a very low variance for treatment (m/z 296).
There are also masses with surprisingly high variance for
analytical uncertainty that still provided significant loading for
one of the comparisons (m/z 150, 215, and 378).

The previous discussion of the PCA loadings and variance
raises interesting questions as to what constitutes a good mass
for discriminating between cultivars and treatments. Figure 7
shows scaled data for three ions: mass m/z 477 had high loadings
for treatments, m/z 447 had high loadings for cultivars, and m/z
207 showed no significant loadings for any of the PCAs. The
vertical gridlines serve to isolate the five subsamples for each
of the seven treatments. The total variance is a function of the
vertical distribution of the data. The variance associated with
cultivars is determined by the difference between the averages
of the two cultivars (i.e., the average of 0, 5, 100, and 1000
ppm vs the average of C100, C80, and Org). The treatment

Table 5. Relative (Percent) Variance for Experimental Factors for UV and
MS Detection

source of variance UV MS(-) MS(+)

total 100 100 100
cultivar mean 33 32 34
treatmentmean 66 59 59
analytical error 1 9 7

Figure 7. Scaled counts as a function of sample treatment for (O) m/z
477, (b) m/z 447, and (4) m/z 207.
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variance will depend on the spacing between the averages of
each treatment, and the variance associated with analytical
uncertainty will be determined by the distribution of the data
around each treatment average.

We observed that the data for m/z 447 had almost 100% of
its variance associated with cultivar. For m/z 477, the variance
associated with cultivar was much less. The variance associated
with analytical uncertainty was a little larger, and variance
associated with treatment was much larger. Finally, we observed
that the variance for m/z 207 was associated primarily with the
analytical uncertainty. Figure 7 illustrates how the PCA loading
for either cultivar or treatment will correlate with high variance
for the same experimental variable. These data reaffirm Wold’s
statement that the directions of maximum variance correspond
to the directions of maximum information (11).

Figure 7 demonstrates why it is difficult to select a few
marker ions for discrimination. Every ion will have a distinctive
pattern. For example, mass m/z 447 is useful for discriminating
between cultivars but not between treatments. Mass m/z 477 is
useful for discriminating between some, but not all, treatments.
Mass m/z 477 allows for discrimination between 0 and 5 ppm
and between 100 and 1000 ppm, but not between 0 and 1000
ppm or between 5 and 100 ppm. Plots of other ions show a
large variety of patterns. Thus, the ability to discriminate on
the basis of experimental variables becomes more reliable as
more variables are used.

These data suggest that rather than selecting a few marker
ions with which to discriminate between cultivar and treatment,
noncontributors should be discarded. That is, it would be better
to discard those ions that offer no significant loading or that
have variance primarily associated with analytical uncertainty.
This can be accomplished by establishing a minimum threshold
for loading or a maximum allowable threshold for the relative
variance of analytical uncertainty. Alternatively, the selected
ions can represent a preset fraction of the variables.

The ions listed in Tables 2 and 3 represent the top 20% of
the loadings. The two lists represent data reductions of factors
of 10 and 7 from the total number of ions for negative and
positive ionization, respectively. The number of useful masses
will be larger if the definition for high loading is extended to
the top 30 or 40%. Obviously, this threshold is arbitrary. In
this study, the full data set was initially considered. All data
below a threshold of 1% relative counts were dropped, and the
remaining data were submitted to PCA and the variance
calculation. For archival purposes, the most complete data set
possible is desirable.

Conclusions. In this study, mass spectral fingerprinting
allowed a global comparison of broccoli cultivars and treatments
and identified discriminating components. ANOVA-PCA pro-
vided clear visual and statistical differentiation of the cultivars
and treatments. PCA variable loadings and relative variance were
correlated and would appear to be better used to discard those
compounds associated primarily with analytical uncertainty
rather than isolating a few positive marker compounds. The data
illustrate the pitfalls of making compound identifications on the
basis of a single ion and point out the need for ion tables for
common plant components.
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